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Abstract
Multi-player online games depict the interaction
of multiple players with each other over time.
Strongly monotone games are of particular in-
terest since they have benign properties and also
relate to many classic games that have applica-
tions in real life. Existing works mainly focus on
the time-invariant case with provable guarantees
established. However, the research of the more
general time-varying games in changing environ-
ments is underexplored and the best-known result
cannot match the guarantees in the time-invariant
case. In this work, we present a new decentralized
online algorithm for time-varying strongly mono-
tone games, which greatly improves existing re-
sults and obtains fast rates, matching the best time-
invariant guarantee without knowing the environ-
mental non-stationarity. Furthermore, to achieve
faster rates, we generalize the RVU property with
smoothness and establish a series of problem-
dependent bounds that also match the best time-
invariant one. To realize all those results, we
make a comprehensive use of the techniques in
non-stationary and universal online learning.

1. Introduction
Multi-player online games (Daskalakis et al., 2011; Rakhlin
& Sridharan, 2013b; Syrgkanis et al., 2015) is a versatile
model that depicts the interaction of multiple players over
time. At each round, each player makes a decision from a
convex compact set, and meanwhile, the environment se-
lects convex loss functions (also called utility functions) for
them. Then each player suffers a loss decided by their own
utility function and the joint decisions of all players. A
fundamental task of game-theoretic learning is to find the
Nash equilibrium, a stable set of decisions where no player
has incentives to deviate (Nash Jr, 1950). However, solving
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an accurate Nash equilibrium is generally computation-hard
or even PPAD-complete (Daskalakis et al., 2009). Fortu-
nately, it has been revealed that when games exhibit certain
benign properties, effective algorithms can be developed to
achieve Nash equilibriums with provable guarantees. Par-
ticularly, recent advances show the great potential of the
regret minimization framework (Freund & Schapire, 1999)
for multi-player online games. Indeed, when each player
minimizes their own regret, the joint decision eventually
converges to a coarse correlated equilibrium. However, it
may differ from the Nash equilibrium. Fortunately, with
more structures in games, regret minimization algorithms
can provably achieve Nash equilibriums.

Among those successes, strongly monotone games (Rosen,
1965) is a significant subclass that encompasses many real-
world applications of interest and has been extensively stud-
ied due to its benign mathematical properties (Monderer
& Shapley, 1996; Nemirovski et al., 2010). It is demon-
strated that, when appropriate regret minimization algo-
rithms are deployed to all players, the distance between
their decisions and Nash equilibrium can provably converge
to zero (Facchinei & Pang, 2003; Bravo et al., 2018). Exist-
ing results on strongly monotone games primarily concern
the time-invariant case, i.e., with fixed utility functions.
However, in real-world applications, many game-related
scenarios are time-varying. For instance, an important game-
theoretic application is the Cournot competition (Monderer
& Shapley, 1996), where multiple firms provide goods to
the market, and the goods are then priced as a function of
the total supply. Due to various factors such as weather, hol-
idays, politics, etc., the supply-market relationship is often
subject to change, while existing studies for time-invariant
scenarios cannot address this issue.

The only existing work for time-varying strongly monotone
games is by Duvocelle et al. (2023), but the attained results
are not favorable enough. Specifically, they investigated the
distance tracking error, the distance between the decisions
and the Nash equilibrium (a formal definition is introduced
in (2.1)), and further proposed a restart-based algorithm to
handle the non-stationarity, attaining anO(

√
T+T 2/3P

1/3
T )

guarantee, where T is the time horizon, and PT measures the
environmental non-stationarity. Notably, the result implies
an O(

√
T ) tracking error in the time-invariant case (where

PT = 0), which unfortunately exhibits a large gap compared
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Table 1: A summary of tracking error guarantees for time-varying strongly monotone games. The first column shows two setups about
non-smooth and smooth games. The second column presents where the results are from. The second column provides the main results,
where PT , VT , and WT are different non-stationarity measures that are at most O(T ) and become 0 in the time-invariant case. The
third column shows implications to the time-invariant case, where our results match the best-known results, i.e., Õ(1) for general utility
functions (Bravo et al., 2018, Theorem 7) and O(1) for smooth functions (Facchinei & Pang, 2003, Section 12.3.2).

Setups Works Time-Varying Games Time-Invariant Games

Non-Smooth Games
Duvocelle et al. (2023) O(

√
T + T 2/3P

1/3
T ) O(

√
T )

This Paper (Theorem 3) Õ(1 + min{T 1/3P
2/3
T ,WT }) Õ(1)

Smooth Games This Paper (Theorem 5) O(min{
√

(1 + VT + PT )(1 + PT ), 1 +WT }) O(1)

to O(log T ), the best-known time-invariant result (Bravo
et al., 2018). It is thus natural to ask for a more thorough
investigation of time-varying strongly monotone games.

This paper presents a more comprehensive characterization
of time-varying strongly monotone games. To optimize the
distance tracking error, we propose a new decentralized on-
line algorithm that achieves an Õ(1 + T 1/3P

2/3
T ) tracking

error bound, where Õ(·) omits the poly-logarithmic depen-
dence in T . The advantages of our result lie in three aspects:
(i) Our result significantly improves upon the previous best-
known O(

√
T + T 2/3P

1/3
T ) rate (Duvocelle et al., 2023),

and importantly, it implies an Õ(1) tracking error when spe-
cializing to the time-invariant scenario, hence matching the
corresponding best-known Õ(1) result (Bravo et al., 2018);
(ii) Our algorithm does not require to know PT , the varia-
tion of Nash equilibriums (a formal definition is deferred
to Section 2.2), that is actually unknown in advance. In
contrast, this quantity is required by Duvocelle et al. (2023);
(iii) Our algorithm exhibits adaptivity to the strong mono-
tonicity in the sense that the monotonicity coefficient is also
not required. We further contribute an orthogonal improve-
ment by showing that our algorithm additionally enjoys an
Õ(1 + WT ) guarantee, where WT quantifies the variance
of the gradients of utility functions. Consequently, our al-
gorithm can take advantage of both slow Nash equilibrium
variation and small gradient variance simultaneously. The
key to our improvement lies in a novel analysis to construct
carefully designed strongly convex surrogate loss functions
by the virtue of strong monotonicity.

To step further, we consider the possibility of obtaining even
faster tracking error rates. Assuming the smoothness of the
utility functions, we generalize the Regret bounded by Vari-
ation in Utilities (RVU) condition (Syrgkanis et al., 2015),
a key property for fast-rate convergence in finite games, to
continuous multi-player games under the time-varying sce-
narios inspired by the recent study of time-varying zero-sum
games (Zhang et al., 2022c). Using the classic optimistic
online gradient descent algorithm (Rakhlin & Sridharan,
2013a), we derive a series of problem-dependent bounds.
Specifically, we obtain an O(

√
(1 + VT + PT )(1 + PT ))

tracking error, where VT is a problem-dependent quantity
that is at most O(T ) but can be much smaller in benign
environments. In addition, our algorithm also benefits from
small gradient variance with an O(1 + WT ) bound. Note
that our new results are faster than Õ(1 + T 1/3P

2/3
T ) with-

out smoothness. For instance, in a game with S switches,
the non-smooth guarantee ensures an Õ(1+T 1/3S2/3) rate.
In contrast, the results here give an optimalO(1+S) bound,
matching the performance of the oracle learner who restarts
once a switch happens and runs a time-invariant algorithm
within each stationary period (thus suffering anO(S) bound
in total, due toO(1) tracking error in each period and overall
S periods). However, the aforementioned guarantees require
different configurations (of the step sizes). To this end, we
leverage a two-layer framework by properly hedging over
many possibilities and finally obtain the same guarantees
with a single algorithm. Table 1 summarizes the existing
result and ours in non-smooth and smooth cases.

Notably, in common interest games, a setting usually en-
countered in distributed optimization problems (Gopal &
Yang, 2013), where the utility functions remain the same
across players, all our results hold for the newly proposed
utility tracking error, which serves as an upper bound of the
distance version and is thus more fundamental in this case.

Techniques. To achieve all those fast-rate guarantees, we
make comprehensive use of recent online convex optimiza-
tion techniques for non-stationarity (Zhao et al., 2021) and
universality (van Erven & Koolen, 2016). In the non-smooth
case, the key improvements over (Duvocelle et al., 2023)
stem from two aspects. First, it is possible to directly han-
dle the non-stationarity with online ensemble (Zhou, 2012;
Zhao, 2021), which is realized by employing a group of on-
line gradient descent (OGD) algorithms (Zinkevich, 2003)
with different configurations as base learners and a meta
learner to track the best one on the fly. As a result, the
two-layer algorithm can track the moving clairvoyant and
does not require PT as input. The second improvement is
carefully designed strongly convex surrogate loss functions
utilizing the virtue of strong monotonicity, which allows
us to leverage the recent progress of non-stationary online
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learning with strongly convex losses.

For the smooth case, our results draw inspiration from time-
varying two-player zero-sum games (Zhang et al., 2022c)
but with additional innovations. On the one hand, we gen-
eralize the key RVU condition to more complex scenarios
with multiple players and general utility functions so that our
bounds can safeguard the tracking error; alternatively, Zhang
et al. (2022c) only bounded quantities related to the sum-
mation of two players’ regret and thus cannot protect the
tracking error. On the other hand, to obtain favorable re-
sults, we need a novel usage of correction terms for online
ensemble, which hinges on the gradient-variation dynamic
regret for online convex optimization (Zhao et al., 2021).

The rest is organized as follows. Section 2 formulates the
problem. Section 3 proposes our fast-rate algorithm for time-
varying strongly monotone games. Section 4 achieves faster
rates with smoothness. Section 5 provides the empirical
evaluations and finally Section 6 concludes the work.

2. Problem Setup
This section introduces the performance and non-stationarity
measures in the time-varying strongly monotone games and
a particular class called common interest games.

2.1. Time-Varying Strongly Monotone Games

A multi-player time-varying game contains T rounds and
N ≥ 2 players. In the t-th round, the i-th player (i ∈
[N ]) chooses a decision xt,i from a compact convex set
Xi ⊆ Rd. Simultaneously, the environments reveal a group
of time-varying utility functions ut,i : X 7→ R for each
player, where X , X1 × . . . × XN . Afterwards, each
player receives her local gradient feedback vt,i(xt), where
xt , (xt,1, . . . , xt,N ) and vt,i(xt) , ∇xt,i

ut,i(xt).

For the i-th player, a Nash equilibrium is a joint deci-
sion x? such that ut,i(x?i ;x

?
−i) ≤ ut,i(xi;x

?
−i) for any

xi ∈ Xi, where x−i , (x1, . . . , xi−1, xi+1, . . . , xN ). Vari-
ational inequality is also used to describe a Nash equilib-
rium: 〈vt(x?),x − x?〉 ≥ 0, where the global gradient
vt(x) , (vt,1(x), . . . , vt,N (x)). Since solving an accu-
rate Nash equilibrium is computation-hard in general multi-
player games, we focus on those with certain benign proper-
ties, especially strongly monotone games (Rosen, 1965).
Definition 1 (Strong Monotonicity). A game with utility
gradient v is µ-strongly monotone if 〈v(x)−v(y),x−y〉 ≥
µ‖x− y‖22 holds for any x,y ∈ X , where µ > 0.

Monotone games include many classic games close to real-
world applications, including Cournot competition (Mon-
derer & Shapley, 1996), Kelly auctions and Tullock com-
petitions (Nemirovski et al., 2010), signal covariance and
power control problems in wireless communications (d’Oro

et al., 2015; Mertikopoulos & Moustakas, 2015), and so
on. We refer readers to Facchinei & Kanzow (2010) for
more applications. Besides, since a monotone game admits
a unique Nash equilibrium (Rosen, 1965), we denote by x?t
the Nash equilibrium of the game of the t-th round.

In game theory and convex optimization, a well-studied
performance measure is the distance tracking error, which
reflects the algorithm’s ability to chase some target mea-
sured by norm distance. In multi-player games, a natural
target is the Nash equilibrium, and thus we investigate

DIST-ERR ,
T∑
t=1

‖xt − x?t ‖
2
. (2.1)

In time-invariant strongly monotone games, where x? is
used to denote the unique Nash equilibrium, the distance
tracking error ‖xt − x?‖2 enjoys an O(t−1) last-iterate
convergence (Bravo et al., 2018, Theorem 7) and can be
improved to O(ρt) with smooth utility functions (Facchinei
& Pang, 2003), where ρ ∈ (0, 1). We end this part by listing
the assumptions and notations used throughout the work.

Assumption 1. For any i ∈ [N ], the gradient satisfies
‖vt,i(·)‖, ‖vt(·)‖ ≤ G and the domain satisfies ‖x− y‖ ≤
D for any x,y ∈ X and ‖x− y‖ ≤ D for any x, y ∈ Xi.
Assumption 2. All games with utility gradients {vt}Tt=1

are µ-strongly monotone (Definition 1).

We use ∆d for a d-dimensional simplex, {at}Tt=1 for the
sequence a1, . . . , aT , ‖ · ‖ for `2-norm in default. a . b rep-
resents a ≤ Õ(b), where Õ(·)-notation omits logarithmic
factors in time horizon T .

2.2. Non-Stationarity Measures

We introduce the following non-stationarity measures to
capture the varying intensity of the time-varying games:

• Path length: PT ,
∑T
t=2 ‖x?t − x?t−1‖ measures the

variation of the time-varying Nash equilibriums.
• Gradient variation: VT ,

∑T
t=2 supx∈X ‖vt(x) −

vt−1(x)‖2 denotes the variation in gradients.
• Gradient variance: WT ,

∑T
t=1 supx∈X ‖vt(x) −

v̄T (x)‖ reflects the variance of the gradients, where
v̄T (·) =

∑T
t=1 vt(·)/T is the average gradient.

The three measures reflect different aspects of the games
and are generally incomparable. We will give more detailed
discussions in the rest of the paper.

2.3. Common Interest Games

Our setup in Section 2.1 exactly matches that of Duvocelle
et al. (2023). Besides, we also investigate a particular class
called common interest games, where the utility functions re-
main the same across players, i.e., ut,i = ut for all i ∈ [N ].
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This game is worth studying since it is widely encountered
in distributed optimization problems, where the problem
dimension is pretty large (Gopal & Yang, 2013).

In common interest games, we propose a more fundamental
performance measure, which evaluates the function level.
Specifically, we define utility tracking error:

UTIL-ERR ,
T∑
t=1

ut(xt)−
T∑
t=1

ut(x
?
t ). (2.2)

Note that (2.1) and (2.2) are incomparable in general, but
we identify that, in common interest strongly monotone
games, the utility tracking error serves as a natural upper
bound of the distance tracking error, showing that (2.2) is
more fundamental in this particular setup. See Proposition 1
for a formal statement with the proof in Appendix B.
Proposition 1. The utility function ut of a µ-strongly mono-
tone game is µ-strongly convex, and the utility tracking er-
ror (2.2) can upper-bound the distance tracking error (2.1),
specifically, µDIST-ERR ≤ 2UTIL-ERR.

3. Fast Rates for Strongly Monotone Games
This section presents our fast-rate results for time-varying
strongly monotone games. First, Section 3.1 reviews the lat-
est work and identifies the unsatisfactory guarantees. Then,
Section 3.2 and Section 3.3 introduce our solution with a fast
tracking error rate. Finally, Section 3.4 shows that our new
method can also take advantage of small gradient variance.

3.1. Reviewing Latest Result

In this part, we review the algorithm and sketch the anal-
ysis of Duvocelle et al. (2023). They focused on the dis-
tance tracking error (2.1). By definition of strong mono-
tonicity and property of Nash equilibriums, they upper-
bounded the distance tracking error as µDIST-ERR ≤∑
t∈[T ]〈vt(xt),xt − x?t 〉. Notably, the right-hand side is

essentially the regret over linear losses {〈vt(xt), ·〉}Tt=1

against a sequence of changing comparators {x?t }Tt=1, which
is unknown and thus in general hard to handle.

To overcome this issue, Duvocelle et al. (2023) leveraged a
restarting strategy in analysis,1 a common way to deal with
non-stationarity (Besbes et al., 2015; Zhao et al., 2020a).
Specifically, dividing the time horizon T into K = dT/∆e
periods of length ∆,

∑
t∈[T ]〈vt(xt),xt−x?t 〉 (upper bound

of distance tracking error) can be decomposed as

K∑
k=1

∑
t∈∆k

〈vt(xt),xt − vk〉+

K∑
k=1

∑
t∈∆k

〈vt(xt),vk − x?t 〉,

1We call it a method with restarts because it decomposes the
regret into multiple periods, just like restart-based algorithms.
Notably, the algorithm does not need to restart.

where ∆k denotes the k-th period and {vk}Kk=1 is a period-
wise stationary comparator sequence. The first term is the
summation of the static regret of all periods, and the second
term represents the gap between two comparator sequences:
{vk}Kk=1 and {x?t }Tt=1. For the first term, since the compara-
tor is fixed as vk inside the k-th period, an algorithm with
static regret guarantees, e.g., OGD (Zinkevich, 2003), gives
an O(

√
∆) regret inside each period with step size 1/

√
∆.

The second term, using the period comparison technique
from Besbes et al. (2015), can be bounded by O(∆PT ),
where PT ,

∑T
t=2 ‖x?t − x?t−1‖ is the path length of the

Nash equilibriums. Summing together gives an upper bound
of O(T/∆ ·

√
∆ + ∆PT ). Choosing the period length op-

timally as ∆ = min{(T/PT )2/3, T}, which is required in
the step size of OGD, gives an O(

√
T + T 2/3P

1/3
T ) bound.

However, their result is not satisfactory enough. Consider
the simplest time-invariant case, i.e., the Nash equilibrium is
fixed x?1 = ... = x?T (so that PT = 0). Their result implies
an O(

√
T ) tracking error, which is exponentially worse

than O(log T ), the best-known result for static strongly
monotone games (Bravo et al., 2018, Theorem 7).

3.2. Tracking the Non-Stationarity Directly

The key idea of Duvocelle et al. (2023) is to divide the
time horizon into multiple periods and treat the games in-
side each period as a time-invariant one in response to the
non-stationarity of time-varying games. However, this may
not be the best way. Indeed, in this online game setup, the
feedback of each player is relatively adequate as they can
observe the gradient information. Thus, instead of restarting
a stationary algorithm, we manage to design online algo-
rithms capable of directly tracking the non-stationarity and
catching up with the changing nature.

With this high-level sense in mind, we present a new decom-
position for the distance tracking error,

T∑
t=1

〈vt(xt),xt − x?t 〉 =

N∑
i=1

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉,

which is the summation of all players’ regret. The regret of
the i-th player is defined on linear losses {〈vt,i(xt), ·〉}Tt=1

against a sequence of time-varying comparators {x?t,i}Tt=1,
and notably the latter is related to Nash equilibriums and is
unknown in advance, or even after the game ends.

Benchmarking online performance against a sequence of
changing comparators is the purpose of dynamic regret
precisely, a central target of non-stationary online learn-
ing (Zinkevich, 2003). It is demonstrated that OGD has
such tracking ability. Specifically, let us consider a general
online convex optimization (OCO) setup, where the online
learner submits decisions {wt}Tt=1 inside a convex feasible
domainW ⊆ Rd and competes with changing comparators
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{ut}Tt=1 over convex losses {ft(·)}Tt=1. A commonly used
performance measure is dynamic regret:

D-REG({ut}Tt=1) ,
T∑
t=1

ft(wt)−
T∑
t=1

ft(ut). (3.1)

OGD, which updates via wt+1 = ΠW [wt − η∇ft(wt)],
provably optimizes (3.1) as D-REG({ut}Tt=1) ≤ O(PT /η+
ηT ) with step size η > 0, where the path length of com-
parators PT ,

∑T
t=2 ‖ut − ut−1‖ essentially measures

the non-stationarity intensity and the regret bound of OGD
scales with it. It is important that we now obtain an online
learner that can directly track the changing comparators,
without any restarts used in (Duvocelle et al., 2023).

In our problem, if each player knew her own path lengthPT,i
defined on {x?t,i}Tt=1, her own regret would be bounded by
at most O(

√
T (1 + PT,i)) by running OGD with step size

η = O(
√
PT,i/T ), leading to an O(

√
T (1 + PT )) track-

ing error, which already improves the O(
√
T + T 2/3P

1/3
T )

bound of Duvocelle et al. (2023). However, the path-length
quantities {PT,i}Ni=1 are in general unavailable. To address
this issue, inspired by the recent progress in non-stationary
OCO (Zhang et al., 2018), we deploy a two-layer online
ensemble algorithm with totally M base learners and a
meta learner. The i-th base learner maintains her own de-
cision wt,i and optimizes the linearized loss 〈∇ft(wt), ·〉
by OGD with her own step size based on a guess of the
path length. The meta learner maintains weights {pt,i}Mi=1

for each base learner and uses an expert-tracking algorithm,
e.g., Hedge (Freund & Schapire, 1997), to track the best
base learner on the fly. Interested readers can refer to Algo-
rithm 3 for algorithmic details. In the following, we provide
the theoretical guarantees of our proposed algorithm, whose
proof is presented in Appendix C.1.
Theorem 1. Under Assumptions 1 and 2, if each player
runs the aforementioned algorithm (Algorithm 3 in Ap-
pendix C.1), the distance tracking error enjoys an upper
bound of O(

√
T (1 + PT )), where PT ,

∑T
t=2 ‖x?t −

x?t−1‖ is the path length. Notably, our algorithm does not
require path-length quantities (PT or {PT,i}Ni=1) as inputs.
Remark 1. Theorem 1 improves the result of Duvocelle
et al. (2023, Theorem 2) in two aspects: (i) Theorem 1
improves the tracking error bound from O(T 2/3P

1/3
T ) to

O(
√
TPT ) since PT ≤ O(T ); and (ii) Theorem 1 is agnos-

tic about PT because the ensemble structure can eliminate
the environmental uncertainty. In contrast, the optimal tun-
ing of the period length ∆ in the method of Duvocelle et al.
(2023) requires the path length PT as an input. ¶

3.3. Further Exploiting Strong Monotonicity

Although Theorem 1 already improves the existing result
(Duvocelle et al., 2023), we discover that a further improve-

ment is possible due to the virtue of strong monotonicity.

The key to the improvement lies in a novel analysis that
extracts strong convexity from the definition of strong mono-
tonicity (Definition 1), constructing a strongly convex surro-
gate upper bound for the distance tracking error, as shown in
Proposition 2 below. The proof is deferred to Appendix C.2.

Proposition 2. Under Assumption 2, it is guaranteed that
µDIST-ERR ≤ 2

∑N
i=1

∑T
t=1(`t,i(xt,i)−`t,i(x?t,i)), where

`t,i(x) , 〈vt,i(xt), x〉+
µ

2
‖x− xt,i‖2 (3.2)

is a µ-strongly convex surrogate loss function.

We first provide the definition of strong convexity for self-
containedness. Specifically, for any w,u ∈ W , a function
f is λ-strongly convex if f(w) − f(u) ≤ 〈∇f(w),w −
u〉 − λ

2 ‖w− u‖2. Clearly, `t,i(·) in (3.2) is µ-strongly con-
vex. The strongly convex surrogate loss function design
allows us to leverage the recent progress of non-stationary
online learning with strongly convex losses (Baby & Wang,
2022). Specifically, assuming the strong monotonicity µ
to be known for a moment, recent studies show that if
the loss functions are strongly convex, algorithms opti-
mizing the strongly adaptive regret (Daniely et al., 2015),
i.e.,

∑
t∈I ft(wt)−

∑
t∈I ft(u) inside an arbitrary interval

I ⊆ [1, T ], can also guarantee the dynamic regret.2 To
conclude, Baby & Wang (2022, Theorem 8) proves that∑
t∈[T ] `t,i(xt,i) −

∑
t∈[T ] `t,i(x

?
t,i) ≤ Õ(1 + T 1/3P

2/3
T,i ).

Summing all players’ regret gives an Õ(1 + T 1/3P
2/3
T )

tracking error bound, which matches the best-known time-
invariant result of Õ(1) (Bravo et al., 2018).

Notably, the aforementioned result requires the knowledge
of strong monotonicity µ in both the construction of surro-
gate loss and the setting of algorithmic parameters. However,
in real applications, this quantity can be hard to estimate at
the beginning of the online games or even unknown, which
asks for online algorithms with more adaptivity. To address
so, we leverage the technique of universal OCO (van Erven
& Koolen, 2016; Wang et al., 2019), which aims to achieve
optimal regret bounds for multiple types of loss functions,
including convex, exp-concave, and strongly convex ones,
using only a single algorithm.

We illustrate the high-level idea of universal methods in the
standard OCO setup (introduced in Section 3.2). In OCO,
universal algorithms (e.g., Wang et al. (2019)) guarantee∑
t∈[T ]〈∇ft(wt),wt − u〉 ≤ Õ(

√
QT ) for any u ∈ W ,

where QT ,
∑
t∈[T ] ‖wt − u‖2. If the loss functions

are µ-strongly convex, the Õ(
√
QT ) bound can be then

2The strongly adaptive regret minimization algorithm is run
on each dimension. Therefore the aggregated decision lies in a
box domain and is then projected into the feasible domain. The
detailed algorithm is deferred to Algorithm 6 in Appendix C.3.

5



Fast Rates in Time-Varying Strongly Monotone Games

Algorithm 1 TV-SMOG for the i-th player
Input: parameter pool H, domain diameter D, gradient
upper bound G
Initialize: M instances of Algorithm 6 A1, . . . ,AM
for t = 1, . . . , T do

Receive xt,i,j from Aj
Submit xt,i =

∑M
j=1 pt,i,jajxt,i,j/

∑M
j=1 pt,i,jaj

Receive gradient feedback vt,i(xt)
Update pt+1,i,j via pt+1,i,j ∝ pt,i,j exp(−st,i,j(xt,i,j))
for j = 1, . . . ,M do

Construct surrogate loss st,i,j with aj ∈ H
Aj updates to xt+1,i,j with surrogate loss st,i,j

end
end

canceled by the negative term −µQT induced by strong
convexity, without the need to know the value of µ, while
attaining the virtue of strong convexity. We note the existing
universal methods only guarantee the static regret (with a
fixed comparator), and we need to adapt them to the dynamic
regret setting (changing comparators) to fit our problem.

In the following, we introduce the algorithmic details of our
solution. Without loss of generality, we consider the case of
1/T ≤ µ ≤ 1, because if µ < 1/T , even the optimal static
regret Θ(log T/µ) (Hazan et al., 2007) is linear in T . On the
contrary, functions with µ > 1 are also 1-strongly convex.
Inspired by Wang et al. (2019), we design a sequence of
strongly convex surrogate loss functions, defined as:

st,i,j(x) , aj〈vt,i(xt), x− xt,i〉+ a2
jG

2‖x− xt,i‖2,

where the hyper-parameter aj is chosen from a pool H ,
{aj |aj = 2−j/(3DG), j ∈ [M ]}withM = d 1

2 log2 T e+1.
The j-th base learner runs the algorithm of Baby & Wang
(2022) (restated in Algorithm 6) with surrogate losses
{st,i,j(·)}Tt=1. Given that different base learners are running
over heterogeneous loss functions, combining them with a
small regret overhead to the best base learner becomes chal-
lenging. To this end, our meta learner employs Titled Expo-
nentially Weighted Average (TEWA), which can combine
base learners with different functions and enjoy a small meta
regret (van Erven & Koolen, 2016). Algorithm 1 concludes
our method for Time-Varying Strongly Monotone Online
Games (abbreviated as TV-SMOG), which notably does not
require strong monotonicity coefficient as an input. The
guarantee is shown below, and the proof is in Appendix C.3.

Theorem 2. Under Assumptions 1 and 2, Algorithm 1 en-
joys the following distance tracking error bound

DIST-ERR ≤ Õ
(

1 + T 1/3P
2/3
T

)
,

without knowing strong monotonicity µ and path length PT .

Theorem 2 implies an Õ(1) tracking error in time-invariant
games, which further improves Theorem 1 and matches the
best-known result (Bravo et al., 2018, Theorem 7).
Remark 2. We remind that Algorithm 1 is decentralized,
in the sense that each player conducts theirss own algorithm
without cooperating with others, and thus valuable for real
applications (Hsieh et al., 2020; Sentenac et al., 2021). ¶

3.4. Taking Advantage of Small Gradient Variance

Theorem 2 obtains an Õ(1 + T 1/3P
2/3
T ) tracking error

bound, which is now the state-of-the-art scaling with
the path length PT . In this part, we further demon-
strate that without any modification, Algorithm 1 can
take advantage of small gradient variance, defined as
WT ,

∑
t∈[T ] supx∈X ‖vt(x) − v̄T (x)‖, where v̄T (·) =∑

t∈[T ] vt(·)/T is the averaged gradient. To do so, we begin
with a different decomposition:

DIST-ERR ≤ 2

T∑
t=1

‖xt − x̄?T ‖2 + 2

T∑
t=1

‖x̄?T − x?t ‖2,

where x̄?T is the Nash equilibrium of the averaged game of
T rounds. Briefly, Algorithm 1 upper-bounds the first term
by Õ(1) via reusing Theorem 2 since x̄?T is fixed. Thus it
remains to analyze the second term, which measures the
gap between the averaged and time-varying Nash equilib-
riums, i.e., x̄?T and {x?t }Tt=1. We prove the second term is
algorithm-irrelevant and can be bounded by O(WT ).

To conclude, using Algorithm 1, we obtain the following
variance-based, and thus best-of-both-worlds, fast tracking
error rate. The proof can be found in Appendix C.4.
Theorem 3 (Main Result). Under Assumptions 1 and 2,
Algorithm 1 enjoys the following tracking error bound

DIST-ERR ≤ Õ (1 +WT ) ,

without knowing the strong monotonicity µ and gradient
variance WT . With Theorem 2, our algorithm thus achieves

DIST-ERR ≤ Õ
(

1 + min
{
T 1/3P

2/3
T ,WT

})
,

without knowing strong monotonicity µ, gradient variance
WT , and path length PT .

Note that path length PT and gradient variance WT are gen-
erally incomparable. Thus both measures have their own
merit, and our algorithm achieves the best of both worlds.
Interested readers can refer to Appendix C of Zhang et al.
(2022c) for more detailed discussions about their relation-
ship in the simpler two-player zero-sum games.

Finally, in Corollary 1 below, we show that in common
interest strongly monotone games (defined in Section 2.3),
our results in Theorem 3 also hold for the more fundamental
utility tracking error. The proof is deferred to Appendix C.4.
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Corollary 1. In common interest strongly monotone games,
under the same assumptions of Theorem 3, Algorithm 1
enjoys the same guarantees for the utility tracking error.

4. Faster Rates in Smooth Games
In this section, we investigate the possibility of obtaining
even faster rates in time-varying strongly monotone games.

4.1. Leveraging RVU Property

In multi-player finite games, an essential property for fast-
rate convergences is the Regret bounded by Variation in
Utilities (RVU) (Syrgkanis et al., 2015), restated as follows.

Definition 2 (RVU Property). An online algorithm satisfies
the RVU property with parameters α > 0 and 0 < β ≤
γ, if its regret

∑
t∈[T ]〈gt,wt − u〉 on any loss sequence

{gt}Tt=1 with respect to any comparator u is bounded by
α+ β

∑
t∈[T ] ‖gt − gt−1‖2 − γ

∑
t∈[T ] ‖wt −wt−1‖2.

Recent progress of online learning shows that the RVU
property is satisfied by the well-known optimistic online
gradient descent (OOGD) (Rakhlin & Sridharan, 2013b),
shown as follows in our notations:

xt,i = ΠXi
[x̂t,i−ηimt,i], x̂t+1,i = ΠXi

[x̂t,i−ηivt,i(xt)],

where the intermediate decision x̂t,i updates using the true
gradient vt,i(xt) and the submitted decision xt,i is generated
from x̂t,i using an optimism mt,i, which can be viewed as
an optimistic estimation of the current gradient vt,i(xt).

Due to the property of finite games (e.g., Theorem 4 of
Syrgkanis et al. (2015)), the gradient variation of the i-th
player (i.e., ‖gt − gt−1‖2) can be bounded by the summa-
tion of other players’ switching costs (i.e.,

∑
j 6=i ‖xt,j −

xt−1,j‖2), with which the summation of all players’ regret
brings cancellations and can thus achieve faster rates.

Zhang et al. (2022c) generalize the RVU property to the
time-varying setting, but only for zero-sum finite games. To
achieve faster rates in our problem, we leverage RVU by
exploiting the smoothness of the utility functions. 3

Assumption 3 (Smoothness). The utility gradient vt(x) is
L-Lipschitz continuous: ‖vt(x)− vt(y)‖ ≤ L‖x− y‖.

We remark that Assumption 3 is mild since similar assump-
tions naturally exist in matrix games as long as the matrix
norm is bounded (Kangarshahi et al., 2018). In the follow-
ing, we further generalize the RVU property to time-varying

3In literature, smooth game (Roughgarden, 2009) also has an-
other meaning: a game is (a, b)-smooth if there exists a joint
decision x? such that

∑N
i=1 ui(x

?
i ;x−i) ≤ a

∑N
i=1 ui(x

?) +

b
∑N

i=1 ui(x) for any x. In words, any player using their opti-
mal strategy continues to do well irrespective of other players.

multi-player continuous games, as shown below in Lemma 1.
And the proof is deferred to Appendix D.1.

Lemma 1. Under Assumptions 1-3, if the i-th player runs
OOGD with optimism mt,i = vt−1,i(xt−1) and step size
ηi, the regret of the i-th player,

∑
t∈[T ]〈vt,i(xt), xt,i−x?t,i〉,

can be non-asymptotically bounded by

1 + PT,i
ηi

+ ηi(1 + VT ) + ηi

N∑
j=1

Sj −
1

ηi
Si, (4.1)

where Sj ,
∑T
t=2 ‖xt,j−xt−1,j‖2 is the cumulative switch-

ing cost of the j-th player, VT denotes the gradient variation
and PT,i represents the path length of the i-th player.

With specific choices of the step sizes {ηi}Ni=1, the sum-
mation of the last two terms in (4.1) can be non-positive,
with which the summation of all players’ regret can
achieve faster rates that only depend on the gradient vari-
ation VT and path length PT . The distance tracking er-
ror can be consequently guaranteed due to DIST-ERR ≤∑
i∈[N ]

∑
t∈[T ]〈vt,i(xt), xt,i − x?t,i〉. Besides, using the

similar analysis in Section 3.4, we show that OOGD can also
take advantage of small gradient variance WT . Theorem 4
informally guarantees the tracking error in various problem-
dependent quantities, which matches the best known O(1)
bound in time-invariant games. The corresponding formal
version and proof can be found in Appendix D.2.

Theorem 4 (informal). Under Assumptions 1-3, if the i-th
player runs OOGD with mt,i = vt−1,i(xt−1), the distance
tracking error enjoys O(

√
(1 + VT + PT )(1 + PT )) and

O(1+WT ) guarantees respectively with different step sizes.
Note that the algorithm requires inputs of path length PT ,
gradient variation VT , and gradient variance WT .

Remark 3. Although the gradient variance WT is an upper
bound of the variation VT , as shown in (D.6), our theoretical
guarantees of O(

√
(1 + VT + PT )(1 + PT )) and O(1 +

WT ) are in general incomparable. ¶

Remark 4. Theorem 4 obtains faster rates than Theorem 2
(without smoothness). For example, in time-invariant games,
theO(1) tracking error induced by Theorem 4 improves the
earlier Õ(1) by log T factors. Another example is the S-
switch games, where Theorem 4 implies anO(1+S) bound,
faster than Õ(1 + T 1/3S2/3) of Theorem 2 since S ≤ T . ¶

4.2. Best-of-Both-Worlds Rates

Theorem 4 obtains faster tracking error guarantees than
those without smoothness. However, different bounds re-
quire different step size setups, which even depend on the
unknown problem-dependent quantities. In this part, we ad-
dress this issue by designing a single algorithm that attains
a best-of-both-worlds tracking error guarantee.
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Algorithm 2 TV-SMOG (smooth) for the i-th player
Input: step size poolHηi (D.18)
Initialize: M instances of OOGD A1, . . . ,AM with step
size ηi,j ∈ Hηi
for t = 1, . . . , T do

Receive xt,i,j from Aj
Submit xt,i =

∑M
j=1 pt,i,jxt,i,j

Receive gradient feedback vt,i(xt)
Construct loss `t,i and optimism mt,i via (4.3)
Update to pt+1,i via (4.2) with learning rate εt,i (D.7)
for j = 1, . . . ,M do
Aj updates to xt+1,i,j with optimism vt−1,i(xt−1)

end
end

To this end, we adopt the two-layer online ensemble frame-
work to facilitate the algorithm with different kinds of
adaptivity. Taking the i-th player as an example, the
decision is given by xt,i =

∑
j∈[M ] pt,i,jxt,i,j , where

pt,i , (pt,i,1, . . . , pt,i,M ) ∈ ∆M denotes the weight re-
turned by the meta learner and the j-th base learner updates
her own decision xt,i,j via OOGD with step size ηi,j . How-
ever, one caveat is that the cancellations from Lemma 1 fail.
To see this, for the j-th base learner, notice that the last
two terms of (4.1) become ηi,j

∑N
j=1 Sj − Si,j/ηi,j , where

Sj ,
∑T
t=2 ‖xt,j−xt−1,j‖2 denotes the cumulative switch-

ing cost of the final decision of the i-th player. However, the
negative term relies on Si,j ,

∑T
t=2 ‖xt,i,j − xt−1,i,j‖2,

the switching cost of the j-th base learner, and thus cannot
be leveraged to cancel the positive switching cost.

To handle this, inspired by the work of Zhao et al. (2021) on
the gradient-variation guarantees in non-stationary environ-
ments, we observe that the switching cost of the i-th player
can be bounded as ‖xt,i − xt−1,i‖2 . ‖pt,i − pt−1,i‖21 +∑
j∈[M ] pt,i,j‖xt,i,j − xt−1,i,j‖2 (interested readers can

refer to (D.10) for a detailed derivation). The first term
‖pt,i − pt−1,i‖21 can be canceled by adopting optimistic
Hedge (Rakhlin & Sridharan, 2013a) as the meta algorithm
(see Lemma 7 for the negative term in the analysis):

pt+1,i,j ∝ exp

(
−εt,i

(
t∑

s=1

`s,i,j +mt+1,i,j

))
, (4.2)

where the learning rate εt,i, the optimism mt,i ,
(mt,i,1, . . . ,mt,i,M ) and the loss `t,i , (`t,i,1, . . . , `t,i,M )
of the meta learner are to be specified later.

To illustrate the high-level solution to
∑
j∈[M ] pt,i,j‖xt,i,j−

xt−1,i,j‖2, we consider a simpler problem with re-
gret

∑
t∈[T ]〈`t,pt〉 −

∑
t∈[T ] `t,i? . If we instead op-

timize the biased loss vector `t + bt and obtain a
bound of RT , the original regret is at most RT −

∑
t∈[T ]

∑
i∈[N ] pt,ibt,i +

∑
t∈[T ] bt,i? , where the negative

term of−
∑
t∈[T ]

∑
i∈[N ] pt,ibt,i is useful. For our purpose,

we set the bias term as λ‖xt,i,j − xt−1,i,j‖2 (λ to be speci-
fied), the switching cost of the j-th base learner. The loss
vector `t,i and optimism mt,i are set accordingly as

`t,i,j , 〈vt,i(xt), xt,i,j〉+ λ‖xt,i,j − xt−1,i,j‖2, (4.3)

mt,i,j , 〈vt−1,i(xt−1), xt,i,j〉+ λ‖xt,i,j − xt−1,i,j‖2.

Our method, TV-SMOG (smooth), is summarized in Algo-
rithm 2. Theorem 5 gives the theoretical guarantees in terms
of multiple problem-dependent quantities. Besides, the in-
dividual regret of each player (i.e.,

∑
t∈[T ]〈vt,i(xt), xt,i −

x?t,i〉), when all players agree to run the same algorithm
distributedly, can also achieve faster rates. A formal version
and the proof are deferred to Appendix D.3.

Theorem 5 (informal). Under Assumptions 1-3, Algo-
rithm 2 guarantees a distance tracking error bound of

O(min{
√

(1 + VT + PT )(1 + PT ), 1 +WT }).

Simultaneously, the individual regret of each player is
bounded by O(1) in the time-invariant case.

Although our solution draws inspiration from Zhang et al.
(2022c), we additionally exploit the structure of strongly
monotone games and can therefore guarantee the tracking
error, while their method only enjoys implicit measures of
the distance to Nash equilibriums.

Finally, Corollary 2 considers common interest strongly
monotone games (defined in Section 2.3) and shows that
the same rates hold for utility tracking error. Besides,
our algorithm can take advantage of the small loss FT ,∑T
t=1 ut(x

?
t ), which is at most O(T ) but can be much

smaller in benign scenarios. The proof is in Appendix D.4.

Corollary 2. In common interest strongly monotone games,
under the assumptions of Theorem 5, Algorithm 2 enjoys an
O(min{

√
(1 + min{VT , FT }+ PT )(1 + PT ), 1 + WT })

best-of-three-worlds utility tracking error guarantee.

The small loss FT is orthogonal to other problem-dependent
measures, because it can be positive in the time-invariant
case and also zero in time-varying games. Therefore, our
algorithm can exploit the merit of different aspects of the
environments and achieve a best-of-three-worlds guarantee.

5. Experiment
This section provides empirical evaluations of our proposed
method in time-varying strongly monotone games.

Contenders. We compare our method, TV-Smog (Algo-
rithm 1) and TV-Smog (Smooth) (Algorithm 2) with three
contenders: (i) OGD does not consider the changing of
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games and runs simple online gradient descent; (ii) Restart
is the method of Duvocelle et al. (2023), which knows the
path length PT in advance; and (iii) Ader is our Algorithm 3
proposed in Section 3.2, which is agnostic about the path
length PT , but does not exploit the strong monotonicity.

Game Setups. Our game setups are mostly inspired by Lin
et al. (2022), and we modify them to be time-varying to
adapt to our problem. We investigate three kinds of time-
varying strongly monotone games, including distributed
`2-regularized logistic regression, Cournot competition, and
strongly convex-concave zero-sum games. In the following,
we introduce the aforementioned setups respectively.

`2-regularized logistic regression is an important model in
machine learning, where the performance is measured by
the `2-regularized logistic loss ut(x) , log(1 + exp(−bt ·
a>t x)) + µ‖x‖22, where at ∈ RN and bt ∈ {−1,+1} are
chosen from a dataset {at, bt}Tt=1, µ is the parameter of the
regularization term to prevent overfitting. In applications,
the problem dimension (i.e., N ) may be extremely large.
Thus distributed computation is usually considered by mod-
eling the problem as a common interest game. See Gopal
& Yang (2013) for an example. Here we use four LIBSVM
datasets to initialize the logistic loss. We set µ = 0.005,
i.e., ut is 0.01-strongly monotone. The logistic loss is also
smooth as long as ‖at‖ is bounded.

In the Cournot competition model, there are N firms, each
supplying the market with a quantity xi ∈ [0, R] of some
good up to the firm’s production capacity. This good is then
priced as a decreasing function P (x) of the total supply,
as determined by all firms’ production. We focus on the
standard linear model: P (x) , a− b

∑N
i=1 xi, where a =

0.5 and b = 1/(NR). The reward of the i-th firm is given by
ut,i(x) , (ct,i − P (xt)) · x, where ct,i ∈ [0, 1] is the time-
varying marginal production cost of the i-th firm at the t-th
round. This game is b-strongly monotone and 2b-smooth.

We consider time-varying zero-sum strongly convex-
concave games with utility ut(x, y) , 1

2‖x‖
2 + x>Aty −

1
2‖y‖

2, which is 1-strongly monotone and 1-smooth.

Results. We report average results with standard devia-
tions of 5 independent runs. Only the randomness of the
initial decisions is preserved. All hyper-parameters are set
to be theoretically optimal. Figure 1 plots the tracking error
of all methods. Smaller tracking error indicates better per-
formance. The results show the supremacy of our TV-Smog
and TV-Smog (Smooth), supporting our theoretical results.

6. Conclusion and Future Directions
This work presents an initial solution for the time-varying
strongly monotone games. We develop novel decentral-
ized online algorithms and establish a series of fast tracking
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Figure 1: Tracking error of all methods in four time-varying
distributed `2-regularized logistic regression tasks, named by
a1a, mushrooms, splice and svmguide3, a time-varying
Cournot competition game named Cournot and a time-varying
strongly convex-concave zero-sum game named zero-sum.

error rates, in both non-smooth and smooth cases. Our re-
sults match the best-known time-invariant bounds and enjoy
many favorable properties. We also investigate the more
specialized common interest strongly monotone games, and
show that our bounds also hold this setup regarding the more
fundamental utility tracking error.

One major future direction is to explore the problem’s lower
bound. Another interesting question is to leverage the strong
convexity induced by strong monotonicity to further im-
prove current results in the smooth case.
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A. Related Work
In this section, we briefly review related works of non-stationary (Appendix A.1) and universal (Appendix A.2) online
learning, and monotone games (Appendix A.3), and compare our work with existing time-varying results (Appendix A.4).

A.1. Non-Stationary Online Convex Optimization

Online convex optimization (OCO), a versatile model which stems from the seminal work of Zinkevich (2003), depicts
the learning of a player in adversarial environments, aiming to minimize the game theoretical performance measure called
regret (Cesa-Bianchi & Lugosi, 2006):

REGT ,
T∑
t=1

ft(wt)− min
w∈W

T∑
t=1

ft(w).

Zinkevich (2003) proposed the well-known OGD and proved anO(
√
T ) regret, which is minimax optimal (Abernethy et al.,

2008a). In non-stationary environments, a more appropriate performance measure is dynamic regret (Zinkevich, 2003):

D-REG({ut}Tt=1) ,
T∑
t=1

ft(wt)−
T∑
t=1

ft(ut)

which aims to compete the performance of the online learner with changing comparators. For convex functions, the
author proved that OGD enjoys a dynamic regret of O(

√
T (1 + PT )), which is sub-optimal. Zhang et al. (2018)

showed that the minimax lower bound is Ω(
√
T (1 + PT )) and closed the gap by proposing an online ensemble algo-

rithm with an O(
√
T (1 + PT )) regret. When exploiting the smoothness, Zhao et al. (2020b) developed a novel online

ensemble algorithm called Sword that enjoys a best-of-both-worlds problem-dependent dynamic regret bound of order
O(
√

(1 + PT + min{VT , FT })(1 + PT )), where VT ,
∑T
t=2 supw∈W ‖∇ft(w)−∇ft−1(w)‖2 measures the variation

of the gradients and FT ,
∑T
t=1 ft(ut) is the cumulative loss of comparators. In the subsequent extended version (Zhao

et al., 2021), the authors further proposed the Sword++ algorithm that achieves the same dynamic regret guarantee while
improving the per-round gradient complexity from O(log T ) to 1 via the collaborative online ensemble framework. For
exp-concave functions, Baby & Wang (2021) proposed an improper learning method (the decisions can be outside the
feasible domain) that enjoys the optimal Õ(1 + T 1/3P

2/3
T ) dynamic regret guarantee. Later, Baby & Wang (2022) showed

that improper learning is not necessary for strongly convex functions and designed a proper learning method with the optimal
dynamic regret bound in this case.

Another commonly used performance measure in non-stationary OCO is the adaptive regret (Hazan & Seshadhri, 2007;
Daniely et al., 2015), which measures the regret inside an arbitrary interval I ⊆ [T ]:

A-REG(I) ,
∑
t∈I

ft(wt)− min
w∈W

∑
t∈I

ft(w).

Hazan & Seshadhri (2007) first proposed the weakly adaptive regret, maxI⊆[T ] A-REG(I), which measures the maximum
regret over all possible intervals. They designed a meta algorithm called Follow the Leading History (FLH) and proved an
Õ(
√
T ) adaptive regret with OGD as base learners. Later, Daniely et al. (2015) optimized the adaptive regret A-REG(I)

over arbitrary interval I, which is called strongly adaptive regret, and proved an Õ(
√
|I|) regret via a new meta algorithm

called SAOL with OGD as base learners. For exp-concave and strongly convex functions, FLH-OGD (Hazan & Seshadhri,
2007) can achieve the optimal regret bound of O(log T ).

The aforementioned works all choose the weighted combination mechanism (i.e., wt =
∑
i pt,iwt,i) in non-stationary

online learning problems. We note that there are other methodologies for combining the multiple base learners, for example,
using techniques from parameter-free online learning (Cutkosky, 2020; Zhang et al., 2022d) and techniques based on the
discounted normal predictor (Kapralov & Panigrahy, 2011; Zhang et al., 2022a).

Finally, we mention that the computational efficiency of the non-stationary online learning, including dynamic and adaptive
regret minimization, is recently considered (Zhao et al., 2022; Lu & Hazan, 2022). Typical algorithms for non-stationary
online learning often utilize the online ensemble framework. The overall method requires to run multiple base learners
(typically O(log T ) base learners) and a meta learner simultaneously, which may introduce some computational overheads

13



Fast Rates in Time-Varying Strongly Monotone Games

compared to the static regret minimization. Zhao et al. (2022) investigated the projection complexity in non-stationary
environments, an important and potentially time-consuming operation for common online learning algorithms such as OGD,
and reduced the number of projection operations needed in each round to 1.

A.2. Universal Online Convex Optimization

When the loss functions are convex, using OGD with a fixed step size η ≈ 1/
√
T gives an optimal regret bound of

O(
√
T ) (Zinkevich, 2003). When the loss functions are α-exp-concave, online Newton step enjoys a regret bound of

O(d log T ) (Hazan et al., 2007). And when the loss functions are σ-strongly convex, using the same OGD algorithm but
with a time-varying step size ηt = 1/(σt) gives an optimal O(log T ) guarantee (Hazan et al., 2007). Although the theories
of OCO are rich, its application requires heavy domain knowledge: (i) the learner must know the type of functions in advance
in order to select an appropriate algorithm; and (ii) for exp-concave and strongly-convex functions, the learner needs the
strong convexity and the exp-concavity coefficients (i.e., values of α and σ) as prior knowledge. Universal online learning
aims to remove the above barriers. A milestone is the MetaGrad proposed by van Erven & Koolen (2016). Briefly, MetaGrad
is a two-layer algorithm, with multiple base learners running on some complicated surrogate losses to guess the curvature
coefficients and a meta learner tracking the best one on the fly. Later, many improvements and extensions are proposed,
that further broaden the application scope of universal methods. Specifically, Wang et al. (2019) improved the results of
MetaGrad for strongly convex functions. Zhang et al. (2022b) proposed a simpler universal method with the same theoretical
guarantees as previous works, but without the need to design handcrafted surrogate losses.

A.3. Monotone Games

Monotone game is a general class of games that satisfies the diagonal strict convexity condition of Rosen (1965). Many
common and well-studied classes of games, such as zero-sum poly-matrix games (Bregman & Fokin, 1987; Daskalakis &
Papadimitriou, 2009; Cai et al., 2016) and its generalization zero-sum socially-concave games (Even-Dar et al., 2009) are
monotone. Solving the Nash equilibriums of a monotone game is equivalent to solving a variational inequality, where there
is a vast literature, and we refer the readers to the work of Facchinei & Pang (2003) for further references. Besides, in the
following, we only talk about the convergence of the last iterate, the decision of the last round of the game.

In generally monotone games, only asymptotic convergence can be guaranteed. With additional smoothness assumption,
Golowich et al. (2020) obtained nearly optimal convergence rate in terms of the total function gap.

There are many works devoted to studying certain subclasses of monotone games. Specifically, Lin et al. (2020) considered
co-coercive games, i.e., 〈v(x)− v(y),x−y〉 ≥ µ‖v(x)− v(y)‖2, in the unconstrained setting (i.e., vt(x?) = 0) and chose
‖vt(xt)‖2 as the performance measure. Although their setting is more general than ours, the two works cannot be compared
directly with since their performance measure is also easier as ‖vt(xt)‖2 is observable while ours ‖xt−x?‖2 is not. Besides,
Loizou et al. (2021) considered a more general setting with quasi-strong monotonicity and expected co-coercivity, and gave
a linear tracking error convergence rate O(ρT ) for some ρ ∈ (0, 1) (see Corollary 4.2 therein). We refer readers to Loizou
et al. (2021) for detailed relationship between monotonicity, co-coercivity and strong monotonicity.

For strongly monotone games, non-asymptotic convergence rates can be established. In the full information setting, an
O(T−1) last-iterate convergence of the tracking error can be obtained (Bravo et al., 2018). With smoothness (i.e., Lipschitz
continuous gradients), this rate can be improved to O(ρT ) for some ρ ∈ (0, 1) (Tseng, 1995; Facchinei & Pang, 2003). In
the bandit feedback setting, existing works cannot obtain faster rates than the single-player results. Specifically, Bravo et al.
(2018) extended the FKM algorithm (Flaxman et al., 2005) to the multi-player setting, and proposed an algorithm with an
O(T−1/3) distance tracking error. With smoothness, Lin et al. (2022) leveraged the self-concordant barrier (Abernethy et al.,
2008b), and obtained an improved result ofO(T−1/2), matching the optimal result in the single-player setting. Drusvyatskiy
et al. (2022) achieved the same guarantee with Lin et al. (2022), while their result depends on an additional assumption
that the Jacobian of each player’s gradient is Lipschitz continuous. There is also a different line of research (Tatarenko &
Kamgarpour, 2019a;b; 2022) that can also obtain the optimal result using Tikhonov (ridge) regularization.

A.4. Time-Varying Games

The study of online time-varying games has just started in recent years and the corresponding related works are limited. In
the following, we directly compare with two works that are mostly related to ours.

Comparison with (Zhang et al., 2022c). As for problem setup, while both their work and ours investigate time-varying
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games, theirs considers the two-player zero-sum games and ours considers the multi-player continuous strongly monotone
games. As for techniques, in smooth games, the bias term injection technique is partially inspired by theirs, which originally
stems from the work of Zhao et al. (2021). However, as mentioned in Section 4.2, the structure of ‖xt,i − xt−1,i‖2 naturally
rises in our problem and the correction term injection is a well-studied solution to handle this term. We also note that the
results of Zhang et al. (2022c) can be directly extended to the multi-player setting, but without tracking error guarantees.
The key observation (Proposition 2) and the techniques used in the non-smooth games are different from theirs.

Comparison with (Duvocelle et al., 2023). Both works investigate time-varying strongly monotone games. Theirs
obtained a dynamic regret of O(

√
T + T 2/3P

1/3
T ), where PT ,

∑T
t=2 ‖x?t − x?t−1‖ denotes the variation of the Nash

equilibriums. The authors argued that this bound is tight according to an Ω(T 2/3(V fT )1/3) lower bound established
by Besbes et al. (2015). We point out this argument is flawed since the V fT quantity is in fact the functional variation:
V fT ,

∑T
t=2 supx |ft(x)− ft−1(x)|. The dynamic regret bounds with respect to PT and V fT are in general incomparable.

Based on the fact that O(
√
T + T 2/3P

1/3
T ) is far from optimal, we obtain improved results in Section 3. Also, Duvocelle

et al. (2023) mentioned that they cannot incorporate strongly convexity into this problem. In this work, we show that this is
actually possible, as illustrated in Proposition 2.

B. Proof of Proposition 1
Proof. First we prove that strong monotonicity directly implies strong convexity. Specifically, since the game of the t-th
round is µ-strongly monotone (see Assumption 2), strong monotonicity (see Definition 1) tells that for any x,y ∈ X ,
µ‖x − y‖2 ≤ 〈vt(x) − vt(y),x − y〉, where vt(·) = ∇ut(·). The following result shows that the definition of strong
monotonicity is in fact an equivalent condition of strong convexity in common interest strongly monotone games, which
means that the utility function ut is µ-strongly convex.

Lemma 2 (Theorem 5.24 of Beck (2017)). Let f be a proper closed and convex function. Then for a given σ > 0,
the following three claims are equivalent: (i) f is σ-strongly convex; (ii) for any x ∈ dom(∂f),y ∈ dom(f) and
g ∈ ∂f(x), f(y) ≥ f(x) + 〈g,y − x〉 + σ

2 ‖y − x‖2; and (iii) for any x,y ∈ dom(∂f) and gx ∈ ∂f(x),gy ∈ ∂f(y),
〈gx − gy,x− y〉 ≥ σ‖x− y‖2.

Consequently, it holds that

µ

2
· DIST-ERR =

µ

2

T∑
t=1

‖xt − x?t ‖2 ≤
T∑
t=1

〈vt(x?t ),x?t − xt〉+

T∑
t=1

ut(xt)−
T∑
t=1

ut(x
?
t ) ≤ UTIL-ERR,

where the first inequality is due to the second property in Lemma 2 and the last inequality is by the definition of the Nash
equilibrium x?t , i.e., 〈vt(x?t ),x?t − x〉 ≤ 0 for any x ∈ X , which completes the proof. �

C. Analysis for Section 3
In this section, we provide the detailed analysis of Section 3, including the algorithm and proof of Theorem 1 in Appendix C.1,
the proof of Proposition 2 in Appendix C.2, the algorithm and proof of Theorem 2 in Appendix C.3 and the proofs of
Theorem 3 and Corollary 1 in Appendix C.4 and Appendix C.5. Finally, we list some useful lemmas in Appendix C.6.

C.1. Algorithm and Proof of Theorem 1

To begin with, we give a different upper bound for the distance tracking error. Specifically, it holds that

µDIST-ERR ≤
T∑
t=1

〈vt(xt),xt − x?t 〉 =

T∑
t=1

N∑
i=1

〈vt,i(xt), xt,i − x?t,i〉, (C.1)

where the first step uses the definition of strong monotonicity and the property of Nash equilibrium: 〈vt(x?t ),x?t − x〉 ≤ 0
for any x ∈ X . In the following, we deploy ADER (Zhang et al., 2018), restated in Algorithm 3 in our notations, to optimize∑
t∈[T ]〈vt,i(xt), xt,i − x?t,i〉 for each player. Specifically, in the t-th round, the algorithm submits a weighted combination

of base learners’ decisions as xt,i =
∑
j∈[M ] pt,i,jxt,i,j and simultaneously receives a gradient feedback vt,i(xt). Then
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Algorithm 3 Deploying ADER (Zhang et al., 2018) for the i-th player
Input: learning rate of the meta learner εi
Initialize: learning rate of the meta learner εi = 1/

√
T , decisions of all base learners x1,i,j ∈ Xi, weights of the meta

learner p1,i,j ∝ 1/(j2 + j) for all j ∈ [M ], step size poolHηi

Hηi ,

{
ηi,j

∣∣∣∣∣ ηi,j =
2j−1D

G

√
7

2T
, j ∈ [M ]

}

for t = 1, . . . , T do
Receive xt,i,j from the j-th base learner
Submit xt,i =

∑M
j=1 pt,i,jxt,i,j and receive a gradient feedback vt,i(xt)

Meta update: Update the weights via pt+1,i,j ∝ pt,i,j exp(−εi〈vt,i(xt), xt,i,j〉)
for j = 1, . . . ,M do

Base update: Update via xt+1,i,j = ΠXi [xt,i,j − ηi,jvt,i(xt)]
end

end

each base learner updates her own decision to xt+1,i,j using her own step size ηi,j via OGD. Finally the meta learner
updates her weights to pt+1,i,j using Hedge with learning rate εi and a linearized loss 〈vt,i(xt), xt,i,j〉. In the following, we
provide the proof of Theorem 1.

Proof. The proof is direct by bounding the summation of all players’ regret bounds and leveraging the theoretical guarantee
of ADER (deferred to Lemma 3 in Appendix C.6),

T∑
t=1

N∑
i=1

〈vt,i(xt), xt,i − x?t,i〉 .
N∑
i=1

√
T (1 + PT,i) ≤ N

√
T (1 + PT ), (by Lemma 3)

where a . b means a ≤ Õ(b), PT,i ,
∑T
t=2 ‖x?t,i − x?t−1,i‖ denotes the path length of the Nash equilibriums of the i-th

player and the last step is true because

N∑
i=1

PT,i =

T∑
t=2

N∑
i=1

‖x?t,i − x?t−1,i‖ ≤
T∑
t=2

√√√√N

N∑
i=1

‖x?t,i − x?t−1,i‖2 =

T∑
t=2

√
N‖x?t − x?t−1‖2 =

√
NPT .

Leveraging (C.1) finishes the proof. �

C.2. Proof of Proposition 2

Proof. Through the definition of strong monotonicity (Definition 1) and moving µ
2

∑T
t=1 ‖xt − x?t ‖2 to the right-hand side,

µ

2

T∑
t=1

‖xt − x?t ‖2 ≤
T∑
t=1

〈vt(xt),xt − x?t 〉 −
µ

2

T∑
t=1

‖xt − x?t ‖2.

Multiplying both sides by 2, it is easy to find that

µ

T∑
t=1

‖xt − x?t ‖2 ≤ 2

(
T∑
t=1

〈vt(xt),xt − x?t 〉 −
µ

2

T∑
t=1

‖xt − x?t ‖2
)

= 2

N∑
i=1

(
T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 −
µ

2

T∑
t=1

‖xt,i − x?t,i‖2
)

= 2

N∑
i=1

(
T∑
t=1

`t,i(xt,i)−
T∑
t=1

`t,i(x
?
t,i)

)
,
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Algorithm 4 FLH-OGD (Hazan & Seshadhri, 2007)
Input: feasible domainW , learning rate of the meta learner ε, loss functions {ht(·)}Tt=1

Initialize: T instances A1, . . . ,AT of OGD
for t = 1, . . . , T do

Receive wt,j from Aj for all j ∈ [t]

Submit decision wt =
∑t
j=1 pt,jwt,j and receive loss function ht

Meta update: Set p̂t+1,t+1 = 0 and update p̂t+1,j =
pt,j exp(−εht(wt,j))∑t

j=1 pt,j exp(−εht(wt,j))
for j ∈ [t]

Meta update: Obtain pt+1,t+1 = 1/(t+ 1) and pt+1,j = (1− (t+ 1)−1)p̂t+1,j for j ∈ [t]
for j = 1, . . . , t+ 1 do

Base update: Update wt,j to wt+1,j via Aj with loss function ht
end

end

where although the second step only holds for `2-norm, it can be extended to arbitrary norm up to constant factors. The last
step holds by the definition of the strongly convex loss function (3.2), restated as follows: `t,i(x) , 〈vt,i(xt), x〉+ µ

2 ‖x−
xt,i‖2, which finishes the proof. �

C.3. Algorithm and Proof of Theorem 2

Before giving the proof of Theorem 2, we explain the complete algorithms of this part. Briefly, the overall algorithms are
concluded in Algorithm 1, Algorithm 4, Algorithm 5 and Algorithm 6. Among them, Algorithm 1 is the top algorithm,
which aims to deal with the unknown strong monotonicity parameter µ and takes Algorithm 6 as base learners. Algorithm 6
aims to handle general convex feasible domains and loss functions with known strong convexity parameter and obtains its
decisions from Algorithm 5. Algorithm 5 works on box domains and runs Algorithm 4 on each dimension. Algorithm 4 runs
FLH-OGD (Hazan & Seshadhri, 2007), an adaptive regret minimization algorithm which runs FLH as the meta learner and
multiple OGDs as the base learners. Algorithm 1, Algorithm 5 and Algorithm 6 are illustrated in the language of online
multi-player games while Algorithm 4 is summarized in the general online convex optimization notations.

In the following, we give the proof of Theorem 2.

Proof. To begin with, we decompose the regret on the surrogate loss function st,i,j , with respect to its j-th base learner:

T∑
t=1

st,i,j(xt,i)−
T∑
t=1

st,i,j(x
?
t,i) ≤

T∑
t=1

st,i,j(xt,i)−
T∑
t=1

st,i,j(xt,i,j)︸ ︷︷ ︸
META-REG

+

T∑
t=1

st,i,j(xt,i,j)−
T∑
t=1

st,i,j(x
?
t,i)︸ ︷︷ ︸

BASE-REG

.

As for the meta regret, we can reuse the result of Wang et al. (2019), restated in Lemma 4, since we use the same meta
algorithm therein. It remains to bound the base regret. Denoting by λj , Gj the strong convexity parameter and the
gradient upper bound of the surrogate loss st,i,j , its gradient upper bound satisfies ‖∇st,i,j(·)‖ = ‖ajvt,i(xt) + 2a2

jG
2(· −

xt,i)‖ ≤ ajG+ 2a2
jG

2D and its strong convexity parameter holds for ‖∇2st,i,j(·)‖ ≤ 2a2
jG

2. For simplicity, we define
Gj , ajG+2a2

jG
2D and λj = 2a2

jG
2. Following Lemma 5 (about the base regret with known strong convexity coefficient),

denoting by TVT,i ,
∑T
t=2 ‖x?t,i − x?t−1,i‖1 the total variation of the comparator sequence {x?t,i}Tt=1, it holds that

BASE-REG =

T∑
t=1

st,i,j(xt,i,j)−
T∑
t=1

st,i,j(x
?
t,i) .

G2
j

λj
(1 + T 1/3TV2/3

T,i ) . 1 + T 1/3P
2/3
T,i ,

where a . b means a ≤ Õ(b), the last step is due to the fact that aj ≤ 1
3DG , which leads to G2

j ≤ λj , and the relationship
between `1-norm and `2-norm: ‖x‖1 ≤

√
d‖x‖2 for any x ∈ Rd. Denoting by REG , META-REG + BASE-REG, we

obtain a problem-dependent bound for
∑
t∈[T ]〈vt,i(xt), xt,i − x?t,i〉:

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 ≤
REG

aj
+ ajG

2
T∑
t=1

‖xt,i − x?t,i‖2 . REG +G

√√√√REG

T∑
t=1

‖xt,i − x?t,i‖2,
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Algorithm 5 Known strong monotonicity parameter µ and box domain (Baby & Wang, 2022)
Input: box domain Xi with diameter B, gradient upper bound G, strong monotonicity parameter µ, dimension d, loss
functions {gt(·)}Tt=1

Initialize: d FLH-OGD instances (Algorithm 4) A1, . . . ,Ad with feasible domain [−B,B] and learning rate εk =
1

2(2B+G/µ)2

for t = 1, . . . , T do
Receive x(k)

t,i from Ak for k ∈ [d]

Submit xt,i , (x
(1)
t,i , . . . , x

(d)
t,i ) and receive loss function gt,i

Construct surrogate loss h(k)
t (x) , (x− (x

(k)
t,i −∇gt(xt,i)(k)/µ))2

for k = 1, . . . , d do
Update x(k)

t,i to x(k)
t+1,i via Ak with loss function h(k)

t,i

end
end

Algorithm 6 Known strong monotonicity parameter µ (Baby & Wang, 2022)
Input: domain Xi, gradient upper bound G, strong monotonicity parameter µ, loss functions {st(·)}Tt=1

Initialize: tightest box X̂i that circumscribes Xi, initialization A of Algorithm 5 with feasible set X̂i and gradient upper
bound 2G
for t = 1, . . . , T do

Receive x̂t,i from A
Submit xt,i = ΠXi [x̂t,i] = arg minx∈Xi

‖x− x̂t,i‖1 and receive gradient feedback vt,i(xt)
Construct surrogate loss gt(x) , st(x) +G · ‖x−ΠXi

(x)‖1
Update x̂t,i to x̂t+1,i via A with loss function gt and strong monotonicity parameter µ

end

where the last step is by considering whether the optimal value of aj =
√

REG
G2

∑T
t=1 ‖xt,i−x?

t,i‖2
is covered by the candidate

poolH = {aj | aj = 2−j/(3DG), j ∈ [M ]} with M = d 1
2 log2 T e+ 1. Finally, the i-th player’s regret can be bounded by

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 −
µ

2

T∑
t=1

‖xt,i − x?t,i‖2 ≤ REG +G

√√√√REG

T∑
t=1

‖xt,i − x?t,i‖2 −
µ

2

T∑
t=1

‖xt,i − x?t,i‖2 ≤
1

µ
REG,

where the last step is due to
√
xy ≤ ax

2 + y
2a for any x, y, a > 0. Combining the regret bounds of all players, we obtain

µDIST-ERR ≤ 2

N∑
i=1

(
T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 −
µ

2

T∑
t=1

‖xt,i − x?t,i‖2
)
.

1

µ

N∑
i=1

(1 + T 1/3P
2/3
T,i ) ≤ N

µ
(1 + T 1/3P

2/3
T ),

which finishes the proof. �

C.4. Proof of Theorem 3

Before the analysis of this part, we denote by x̄?T the Nash equilibrium of the averaged game from t = 1 to T , whose utility
gradient is v̄T (·) ,

∑
t∈[T ] vt(·)/T . Note that the averaged Nash equilibrium x̄?T must exist and is unique because: (i) the

average of multiple strongly monotone games is still strongly monotone, due to Definition 1; and (ii) a monotone game
admits a unique Nash equilibrium (Rosen, 1965).

In the following, we give the detailed proof of Theorem 3 .
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Proof. The distance tracking error can be decomposed with the averaged Nash equilibrium x̄?T as an intermediate variable:

µDIST-ERR = µ

T∑
t=1

‖xt − x?t ‖2 ≤ 2µ

T∑
t=1

‖xt − x̄?T ‖2︸ ︷︷ ︸
TERM (A)

+2µ

T∑
t=1

‖x̄?T − x?t ‖2︸ ︷︷ ︸
TERM (B)

.

To bound TERM (A), through the definition of strong monotonicity (Definition 1), it holds that

µ

2

T∑
t=1

‖xt − x̄?T ‖2 ≤
T∑
t=1

〈vt(xt)− vt(x̄?T ),xt − x̄?T 〉 −
µ

2

T∑
t=1

‖xt − x̄?T ‖2.

Multiplying both sides by 2, we obtain

TERM (A) = µ

T∑
t=1

‖xt − x̄?T ‖2 ≤ 2

(
T∑
t=1

〈vt(xt),xt − x̄?T 〉 −
µ

2

T∑
t=1

‖xt − x̄?T ‖2
)

︸ ︷︷ ︸
TERM (C)

+ 2

T∑
t=1

〈v̄T (x̄?T ), x̄?T − xt〉+ 2

T∑
t=1

〈vt(x̄?T )− v̄T (x̄?T ), x̄?T − xt〉

≤ 2

N∑
i=1

(
T∑
t=1

`t,i(xt,i)−
T∑
t=1

`t,i(x̄
?
T,i)

)
+ 2DWT

. Õ(1) +DWT , (by using Theorem 2 with PT,i = 0)

where the second inequality is due to the definition of the surrogate loss function `t,i (3.2), x̄?T is the Nash equilibrium of
v̄T , namely, 〈v̄T (x̄?T ), x̄?T − x〉 ≤ 0 for any x ∈ X and

T∑
t=1

〈vt(x̄?T )− v̄T (x̄?T ), x̄?T − x?t 〉 ≤ D
T∑
t=1

‖vt(x̄?T )− v̄T (x̄?T )‖ ≤ D
T∑
t=1

sup
x∈X
‖vt(x)− v̄T (x)‖ = DWT . (C.2)

TERM (B) can be bounded as

TERM (B) = µ

T∑
t=1

‖x̄?T − x?t ‖2 ≤
T∑
t=1

〈vt(x?t )− vt(x̄?T ),x?t − x̄?T 〉 (by Definition 1)

=

T∑
t=1

〈vt(x?t ),x?t − x̄?T 〉+

T∑
t=1

〈v̄T (x̄?T ), x̄?T − x?t 〉+

T∑
t=1

〈vt(x̄?T )− v̄T (x̄?T ), x̄?T − xt〉 ≤ DWT

where the first two terms in the second last step is non-positive because x?t and x̄?T are both Nash equilibriums of the t-th
round and the averaged game, respectively, i.e., 〈vt(x?t ),x?t − x〉 ≤ 0 and 〈v̄T (x̄?T ), x̄?T − y〉 ≤ 0 for any x,y ∈ X . The
last term can be bounded using (C.2) again. Combining the bounds of TERM (A) and TERM (B) finishes the proof. �

C.5. Proof of Corollary 1

Proof. The proof is direct by combining Proposition 1 and Theorem 3. �

C.6. Useful Lemmas

Lemma 3 (Theorem 3 of Zhang et al. (2018)). Assume the domain has a diameter D, i.e., ‖x− y‖ ≤ D for any x,y ∈ W
and the gradient of the loss functions ft has an upper bound G, i.e., ‖∇ft(·)‖ ≤ G, then ADER enjoys

T∑
t=1

ft(wt)−
T∑
t=1

ft(ut) ≤ O
(√

T (1 + PT )
)
,

where PT ,
∑T
t=2 ‖ut − ut−1‖ denotes the path length.
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Lemma 4 (Lemma 1 of Wang et al. (2019)). Due to the construction of the surrogate loss functions st,i,j , if the meta
learner updates as in Algorithm 1, the meta regret on the surrogate loss can be bounded by

META-REG =

T∑
t=1

st,i,j(xt,i)−
T∑
t=1

st,i,j(xt,i,j) ≤ O(log T ).

Lemma 5 (Theorem 8 of Baby & Wang (2022)). Let the feasible domain beW ⊆ Rd and let the loss functions {ft(·)}Tt=1

areH-strongly convex in `2-norm and satisfy ‖∇ft(·)‖∞ ≤ G. Then the algorithm (Figure 3 therein, restated in Algorithm 6
for self-containedness) guarantees that

T∑
t=1

ft(wt)−
T∑
t=1

ft(ut) ≤ Õ
(
G2

H
max{d, d1/3T 1/3TV2/3

T }
)
,

for any comparator sequence {ut}Tt=1 ∈ W with TVT ,
∑T
t=2 ‖ut − ut−1‖1. Õ(·) hides the dependence of log T .

Note that the original proof omits the dependence of the gradient upper bound G and the strong convexity parameter H . For
self-containedness, we restate the proof to illuminate the concerned parameter dependence.

Proof of Lemma 5. The regret can be decomposed as the regret summation of the surrogate loss on each dimension:

T∑
t=1

ft(wt)−
T∑
t=1

ft(ut) ≤
H

2

d∑
k=1

(
T∑
t=1

h
(k)
t (w

(k)
t )−

T∑
t=1

h
(k)
t (u

(k)
t )

)
,

where w
(k)
t denotes the k-th dimension of wt and so does u

(k)
t . h(k)

t (x) ,
(
x−

(
w

(k)
t −

∇ft(wt)
(k)

H

))2

is a squared

surrogate loss function. For general squared loss function gt(x) , (x − y)2, where x ∈ [−B,B] and y ∈ [−G,G], it is
1/(2(B+G)2)-exp-concave. It is known that for a α-exp-concave loss function, FLH-OGD enjoysO(α−1 log T ) adaptive
regret on each interval inside the whole time horizon (Hazan & Seshadhri, 2007, Lemma 8). As a result, the dynamic regret
of the squared loss function {gt(·)}Tt=1 is about O((B +G)2(1 + T 2/3P

1/3
T )) (Baby & Wang, 2022, Lemma 18). Since the

surrogate loss h(k)
t (·) is α-exp-concave with parameter

α =
1

2
(
2B + G

H

)2 ,
we obtain

T∑
t=1

ft(wt)−
T∑
t=1

ft(ut) .
H

2

d∑
k=1

2

(
2B +

G

H

)2

(1 + T 2/3P
1/3
T ) .

G2

H
(1 + T 2/3P

1/3
T ),

where a . b means a ≤ Õ(b), and the last step is true since we consider H ≤ 1 without loss of generality. �

D. Analysis for Section 4
In this section, we provide the detailed analysis of Section 4, including the proof of Lemma 1 in Appendix D.1, the proof
of Theorem 4 in Appendix D.2, the proof of Theorem 5 in Appendix D.3 and the proof of Corollary 2 in Appendix D.4.
Finally, in Appendix D.5, we list some useful lemmas.

D.1. Proof of Lemma 1

Proof. First, by the standard dynamic regret analysis of OOGD (see Lemma 6), it holds that

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 ≤
D2 + 2DPT,i

2ηi
+ ηi

(
G2 +

T∑
t=2

‖vt,i(xt)− vt−1,i(xt−1)‖2
)
− 1

4ηi

T∑
t=2

‖xt,i − xt−1,i‖2 .
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Diving into the second term (i.e., gradient variation) above, we have

T∑
t=2

‖vt,i(xt)− vt−1,i(xt−1)‖2 =

T∑
t=2

‖vt,i(xt)− vt−1,i(xt) + vt−1,i(xt)− vt−1,i(xt−1)‖2

≤ 2

T∑
t=2

sup
x∈X
‖vt,i(x)− vt−1,i(x)‖2 + 2

T∑
t=2

‖vt−1,i(xt)− vt−1,i(xt−1)‖2

≤ 2VT + 2

T∑
t=2

‖vt−1(xt)− vt−1(xt−1)‖2 ≤ 2VT + 2L2
T∑
t=2

N∑
j=1

‖xt,j − xt−1,j‖2 , (D.1)

where the second inequality holds because if we denote by h(x) , ‖vt,i(x)− vt−1,i(x)‖2 and g(x) , ‖vt(x)− vt−1(x)‖2,
then h(x) ≤ g(x) is true obviously, which consequently implies supx∈X h(x) ≤ supx∈X g(x). Thus we obtain

T∑
t=1

sup
x∈X
‖vt,i(x)− vt−1,i(x)‖2 ≤

T∑
t=1

sup
x∈X
‖vt(x)− vt−1(x)‖2 = VT .

The last inequality in (D.1) uses Assumption 3 and the fact that ‖xt − xt−1‖2 =
∑N
j=1 ‖xt,j − xt−1,j‖2. Finally, we have

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 ≤
D2 + 2DPT,i

2ηi
+ ηi(G

2 + 2VT ) + 2ηiL
2
N∑
j=1

Sj −
1

4ηi
Si,

where Sj ,
∑T
t=2 ‖xt,j − xt−1,j‖2 denotes the cumulative switching cost of the j-th player. �

D.2. Proof of Theorem 4

In the following, we provide a formal version of Theorem 4 and the corresponding proof.

Theorem 6. Under Assumptions 1-3, if all problem-dependent quantities are known a priori, the i-th player runs OOGD:

xt,i = ΠXi [x̂t,i − ηimt,i], x̂t+1,i = ΠXi [x̂t,i − ηivt,i(xt)], (D.2)

with optimism mt,i = vt−1,i(xt−1), then the distance tracking error can be upper-bounded by

• O(
√

(1 + VT + PT )(1 + PT )) if choosing the step size as

ηi = min


√
D2 + 2DPT,i
2G2 + 4VT

,
1

2L
√
N

 ;

• O(1 +WT ) if choosing the step size as

ηi = min


√

D2

2G2 + 4VT
,

1

2L
√
N

 .

Proof of Theorem 6. We first prove the gradient-variation bound, then the gradient-variance bound.

Gradient-Variation Bound. Summing the regret bounds of all players using Lemma 1 gives

N∑
i=1

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 =

N∑
i=1

(
D2 + 2DPT,i

2ηi
+ ηi(G

2 + 2VT )

)
+ 2L2

N∑
i=1

ηi

N∑
j=1

Sj −
N∑
i=1

1

4ηi
Si.
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Our goal is to design the players’ step sizes η1, . . . , ηN such that

2L2
N∑
i=1

ηi

N∑
j=1

Sj −
N∑
i=1

1

4ηi
Si =

N∑
i=1

2L2
N∑
j=1

ηj −
1

4ηi

Si < 0,

which means the step sizes need to satisfy 2L2
∑
j∈[N ] ηj ≤

1
4ηi

. This requirement is easy to satisfy. Assume there is a
constant X such that 2L2

∑
j∈[N ] ηj ≤ X ≤ 1/(4ηi). Solving the second inequality gives ηi ≤ 1/(4X) for all i ∈ [N ].

Plugging this into the first inequality, we have L2N/(2X) ≤ X . We can set X = L
√
N/2, and it suffices to choose

ηi ≤
1

2L
√
N
.

Overall the distance tracking error is at most

µDIST-ERR ≤
N∑
i=1

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 ≤
N∑
i=1

(
D2 + 2DPT,i

2ηi
+ ηi(G

2 + 2VT )

)
(D.3)

≤
N∑
i=1

(√
2(G2 + 2VT )(D2 + 2DPT,i) + L

√
N(D2 + 2DPT,i)

)
.
√

(1 + VT + PT )(1 + PT ),

where a . b means a ≤ Õ(b) and the last inequality is by choosing the step size as

ηi = min


√
D2 + 2DPT,i
2G2 + 4VT

,
1

2L
√
N

 . (D.4)

Gradient-Variance Bound. Let x̄?T be the Nash equilibrium of the averaged game over the whole time horizon T .
Following the similar analysis in Appendix C.4, we have

µDIST-ERR ≤ 2

N∑
i=1

T∑
t=1

〈vt,i(xt), xt,i − x̄?T,i〉+ 4DWT ≤ 2

N∑
i=1

(
D2

2ηi
+ ηi(G

2 + 2VT )

)
+ 4DWT

≤ 2

N∑
i=1

(
D
√

2(G2 + 2VT ) + LD2
√
N
)

+ 4DWT . 1 +WT ,

where the second step reuse Lemma 6 with PT,i = 0 and the third step is by setting the step size as

η = min


√

D2

2G2 + 4VT
,

1

2L
√
N

 , (D.5)

and the last step is due to the relationship between gradient variation VT and gradient variance WT :

VT =

T∑
t=1

sup
x∈X
‖vt(x)− vt−1(x)‖2 = 4G2

T∑
t=1

sup
x∈X

(
‖vt(x)− vt−1(x)‖

2G

)2

≤ 2G

T∑
t=1

sup
x∈X
‖vt(x)− vt−1(x)‖ (by Assumption 1)

≤ 4G

T∑
t=1

sup
x∈X
‖vt(x)− v̄T (x)‖+ 4G

T∑
t=1

sup
x∈X
‖vt−1(x)− v̄T (x)‖

≤ 8G

T∑
t=1

sup
x∈X
‖vt(x)− v̄T (x)‖ = 8GWT , (D.6)

which finishes the proof. �

Remark 5. The tuning of the step sizes requires the players number N . We note that this requirement is mild, which also
appears in other multi-player analyses, e.g., in the work of Syrgkanis et al. (2015). ¶
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D.3. Proof of Theorem 5

To start with, we specify the step sizes of the meta learner:

ε0,i = ε1,i =
1

L
, and εt,i =

1√
L2 +

∑t−1
s=2 ‖vs,i(xs)− vs−1,i(xs−1)‖2

for 2 ≤ t ≤ T − 1. (D.7)

In the following, we provide a formal version of Theorem 5 and the corresponding proof.

Theorem 7. Under Assumptions 1-3, Algorithm 2 enjoys the following guarantees simultaneously for the distance tracking
error and regret of individual players when they agree to run the same algorithm (abbreviated as honest regret):

DIST-ERR ≤

O
(√

(1 + VT + PT )(1 + PT )
)

O(1 +WT )
,

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 ≤


O
(√

(1 + VT + PT )(1 + PT,i)

)
O
(√

(1 +WT + PT,i)(1 + PT,i)

) ,

where PT , VT ,WT denote the path length, gradient variation and gradient variance, respectively.

Proof of Theorem 7. We first prove the gradient-variation bound and then the gradient-variance bound. For simplicity, we
assume all problem-dependent quantities are known for a moment and illuminate the setting of the step size pool later.

Gradient-Variation Bound. First we decompose the regret of the i-th player with respect to its j-th base learner:

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 =

T∑
t=1

〈vt,i(xt), xt,i − xt,i,j〉︸ ︷︷ ︸
META-REG

+

T∑
t=1

〈vt,i(xt), xt,i,j − x?t,i〉︸ ︷︷ ︸
BASE-REG

.

The regret of the meta learner, due to Lemma 7 (optimistic Hedge is a special case of optimistic FTRL by choosing negative
entropy as the regularizer), can be bounded as

T∑
t=1

〈`t,i,pt,i − ej〉 ≤
KL(ej ,p1,i)

εT−1,i
+

T∑
t=1

εt−1,i‖`t,i −mt,i‖2∞ −
T−1∑
t=1

1

8εt−1,i
‖pt,i − pt+1,i‖21, (D.8)

where the first term above can be bounded by plugging the setup of learning rate (D.7):

KL(ej ,p1,i)

εT−1,i
=

ln(1/p1,i,j)

εT−1,i
= lnM

√√√√L2 +

T∑
t=2

‖vt,i(xt)− vt−1,i(xt−1)‖2.

The second term in (D.8) can be analyzed as

T∑
t=1

εt−1,i ‖`t,i −mt,i‖2∞ = ε0,i‖`1,i‖2∞ +

T∑
t=2

εt−1,i max
j∈[M ]

〈vt,i(xt)− vt−1,i(xt−1), xt,i,j〉2

≤ D2(G+ λD)2

L
+D2

T∑
t=2

εt−1,i ‖vt,i(xt)− vt−1,i(xt−1)‖2

= O(1) +D2
T∑
t=2

‖vt,i(xt)− vt−1,i(xt−1)‖2√
L2 +

∑t−1
s=2 ‖vs,i(xs)− vs−1,i(xs−1)‖2

(by (D.7))

≤ O(1) + 4D2

√√√√L2 +

T∑
t=2

‖vt,i(xt)− vt−1,i(xt−1)‖2,
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where the first step is because of m1,i = 0, the second step is due to maxt,i,j `t,i,j ≤ GD + λD2 (see (4.3) for the

definition of the meta learner’s loss) and the last step uses
∑T
t=1 at/

√
1 +

∑t−1
s=1 as ≤ 4

√
1 +

∑T
t=1 at + maxt∈[T ] at for

any a1, a2, . . . , aT > 0 (Pogodin & Lattimore, 2019, Lemma 4.8). Overall, the regret of the meta learner is at most

T∑
t=1

〈`t,i,pt,i − ej〉 ≤ (4D2 + lnM)

√√√√L2 +

T∑
t=2

‖vt,i(xt)− vt−1,i(xt−1)‖2 − L

8

T−1∑
t=1

‖pt,i − pt+1,i‖21 +O(1).

Plugging in the definition of the surrogate loss function `t,i (4.3), the meta regret can be bounded as

META-REG ≤ (4D2 + lnM)

√√√√L2 +

T∑
t=2

‖vt,i(xt)− vt−1,i(xt−1)‖2 − L

8

T−1∑
t=1

‖pt,i − pt+1,i‖21

− λ
T∑
t=2

M∑
j=1

pt,i,j ‖xt,i,j − xt−1,i,j‖2 + λ

T∑
t=2

‖xt,i,j − xt−1,i,j‖2 +O(1).

As for the base regret, following the standard analysis of OOGD (deferred to Lemma 6), it holds that

BASE-REG ≤ D2 + 2DPT,i
2ηi,j

+ ηi,j

(
G2 +

T∑
t=2

‖vt,i(xt)− vt−1,i(xt−1)‖2
)
− 1

4ηi,j

T∑
t=2

‖xt,i,j − xt−1,i,j‖2 .

Suppose there is a uniform upper bound X for ηi,j , the step size of the j-th base learner of the i-th player, for all
i ∈ [N ], j ∈ [M ]. Overall, the regret of the i-th player is at most

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 ≤ O(1)− L

8

T−1∑
t=1

‖pt,i − pt+1,i‖21 − λ
T∑
t=2

M∑
j=1

pt,i,j ‖xt,i,j − xt−1,i,j‖2

+

(
λ− 1

4X

) T∑
t=2

‖xt,i,j − xt−1,i,j‖2 +
5D2 + lnM + 2DPT,i

2ηi,j

+ ηi,j

(
G2 + L2 + 2

T∑
t=2

‖vt,i(xt)− vt−1,i(xt−1)‖2
)

(D.9)

≤ c1 + 2DPT,i
2ηi,j

+ ηi,j(c2 + 4VT ) + 8L2D2X

T∑
t=2

N∑
i=1

‖pt,i − pt−1,i‖2 (by (D.1))

+ 8L2X

N∑
i=1

T∑
t=2

M∑
j=1

pt,i,j ‖xt,i,j − xt−1,i,j‖2 +

(
λ− 1

4X

) T∑
t=2

‖xt,i,j − xt−1,i,j‖2

− λ
T∑
t=2

M∑
j=1

pt,i,j ‖xt,i,j − xt−1,i,j‖2 −
L

8

T−1∑
t=1

‖pt,i − pt+1,i‖21 +O(1)

where c1 = 5D2 + lnM, c2 = G2 + L2. The first inequality holds since
√
xy ≤ ax

2 + y
2a for any x, y, a > 0,√√√√L2 +

T∑
t=2

‖vt,i(xt)− vt−1,i(xt−1)‖2 ≤ 1

2ηi,j
+
ηi,j

(
L2 +

∑T
t=2 ‖vt,i(xt)− vt−1,i(xt−1)‖2

)
2

,

and the second step is true since (D.1) and

‖xt,i − xt−1,i‖2 =

∥∥∥∥∥∥
M∑
j=1

pt,i,jxt,i,j −
M∑
j=1

pt−1,i,jxt−1,i,j

∥∥∥∥∥∥
2
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=

∥∥∥∥∥∥
M∑
j=1

pt,i,jxt,i,j −
M∑
j=1

pt,i,jxt−1,i,j +

M∑
j=1

pt,i,jxt−1,i,j −
M∑
j=1

pt−1,i,jxt−1,i,j

∥∥∥∥∥∥
2

≤ 2

M∑
j=1

pt,i,j ‖xt,i,j − xt−1,i,j‖2 + 2D2 ‖pt,i − pt−1,i‖21 . (D.10)

Summing all players’ regret, we have

N∑
i=1

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 ≤ O(1) +

N∑
i=1

(
c1 + 2DPT,i

2ηi,j
+ ηi,j(c2 + 4VT )

)

+

N∑
i=1

(
λ− 1

4X

) T∑
t=2

‖xt,i,j − xt−1,i,j‖2 +

(
8NL2D2X − L

8

) N∑
i=1

T∑
t=2

‖pt,i − pt−1,i‖21

+ (8NL2X − λ)

N∑
i=1

T∑
t=2

M∑
j=1

pt,i,j ‖xt,i,j − xt−1,i,j‖2 . (D.11)

Following the above analysis, for all i ∈ [N ] and j ∈ [M ], we choose

λ = 16NLD2, ηi,j ≤
1

128NLD2
= X

such that

λ− 1

4X
= −16NLD2 < 0, 8NL2X − λ ≤ −15NLD2 < 0, 8NL2D2X − L

8
= − 1

16
< 0.

The distance tracking error can be thus bounded as

µDIST-ERR ≤
T∑
t=1

〈vt(xt),xt − x?t 〉 =

N∑
i=1

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉

≤
N∑
i=1

(
c1 + 2DPT,i

2ηi,j
+ ηi,j(c2 + 4VT )

)
.
√

(1 + VT + PT )(1 + PT ), (D.12)

where a . b means a ≤ Õ(b) and the last step is by choosing the step size optimally as ηi,j = η?i , where

η?i = min

{√
c1 + 2DPT,i
2c2 + 8VT

,
1

128NLD2

}
. (D.13)

As for the honest regret of individual players, to start with, since
∑
t∈[T ]〈vt(xt),xt−x?t 〉 ≥

∑
t∈[T ]〈vt(xt)− vt(x?t ),xt−

x?t 〉 ≥ µ
∑
t∈[T ] ‖xt − x?t ‖2 ≥ 0, it means that the left-hand side of (D.11) is positive. As a result, we can move the terms

that are canceled to the left hand side of (D.11) to upper-bound them. By doing so, we obtain

T∑
t=2

‖xt − xt−1‖2 ≤ 2

N∑
i=1

T∑
t=2

D2 ‖pt,i − pt−1,i‖2 +

M∑
j=1

pt,i,j ‖xt,i,j − xt−1,i,j‖2
 .√(1 + VT + PT )(1 + PT ).

Thus the honest regret of the i-th player, via Lemma 1, can be bounded as

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 ≤
D2 + 2DPT,i

2ηi,j
+ ηi,j(G

2 + 2VT ) + 2ηi,jL
2
T∑
t=2

‖xt − xt−1‖2

.
D2 + 2DPT,i

2ηi,j
+ ηi,j(G

2 + 2VT ) + 2ηi,jL
2
√

(1 + VT + PT )(1 + PT )
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.
D2 + 2DPT,i

2ηi,j
+ ηi,j(1 + VT + PT ) .

√
(1 + PT,i)(1 + VT + PT ), (D.14)

where the last step is by setting the step size optimally as

η?i =

√
D2 + 2DPT,i

N(1 + VT + PT )
. (D.15)

Gradient-Variance Bound. Following the same analysis as in Appendix C.4, the environmental non-stationarity can be
extracted into the gradient-variance term:

µDIST-ERR ≤ 2

N∑
i=1

T∑
t=1

〈vt,i(xt), xt,i − x̄?T,i〉+ 4DWT .
√

1 + VT +WT . 1 +WT ,

where the last step holds due to (D.12) with PT = 0 and the relationship between gradient variation VT and gradient
variance WT (D.6). As for the honest regret of individual players, following the same argument of the last part, we have

T∑
t=2

‖xt − xt−1‖2 ≤ 2

N∑
i=1

T∑
t=2

D2 ‖pt,i − pt−1,i‖2 +

M∑
j=1

pt,i,j ‖xt,i,j − xt−1,i,j‖2
 . 1 +WT .

Consequently, via Lemma 1, we have

T∑
t=1

〈vt,i(xt), xt,i − x?t,i〉 ≤
D2 + 2DPT,i

2ηi,j
+ ηi,j(G

2 + 2VT ) + 2ηi,jL
2
T∑
t=2

‖xt − xt−1‖2

.
D2 + 2DPT,i

2ηi,j
+ ηi,j(G

2 + 2VT ) + 2ηi,jL
2(1 +WT )

.
D2 + 2DPT,i

2ηi,j
+ ηi,j(1 +WT ) ≤

√
(1 + PT,i)(1 +WT + PT,i), (D.16)

where the last step is by setting the step size optimally as

η?i =

√
D2 + 2DPT,i
N(1 +WT )

. (D.17)

Step Size Pool Configuration. In the last part of the proof, we consider together different optimal tunings of the above
guarantees, including (D.13), (D.15) and (D.17), and give the setting of step size pool that covers all of them. Specifically,
we choose the step size pool as

Hηi ,

{
ηi,j

∣∣∣∣∣ ηi,j ≈ min

{√
1

1 + T
· 2j−1,

1

NL

}
, j ∈ [M ]

}
, (D.18)

where M ≈ dlog2(T + 1)e+ 1 = O(log T ), which finishes the proof. �

D.4. Proof of Corollary 2

Proof. The proofs of gradient-variation and gradient-variance bound can be obtained directly by combining Proposition 1
and Theorem 5. As a result, in the following, we focus on the small-loss bound.

Small-Loss Bound. If we choose the step size of all players as η (to be specified later), following Lemma 6, it holds that

T∑
t=1

〈vt(xt),xt − x?t 〉 ≤
N(D2 + 2DPT )

2η
+ ηNG2 + η

N∑
i=1

T∑
t=2

‖vt,i(xt)− vt−1,i(xt−1)‖2 .
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Next, we show that the second term above, i.e., the gradient-variation term, naturally implies small-loss term. Specifically,

N∑
i=1

T∑
t=2

‖vt,i(xt)− vt−1,i(xt−1)‖2 ≤ 2

N∑
i=1

T∑
t=2

(
‖vt,i(xt)‖2 + ‖vt−1,i(xt−1)‖2

)
≤ 4

N∑
i=1

T∑
t=1

‖vt,i(xt)‖2 = 4

T∑
t=1

‖vt(xt)‖2 ≤ 16L

T∑
t=1

ut(xt), (D.19)

where the equality uses the fact that
∑
i∈[N ] ‖vt,i(xt)‖

2
= ‖vt(xt)‖2 and the last step holds due to the property of

nonnegative and smooth functions (‖∇f(·)‖22 ≤ 4Lf(·) for any L-smooth and non-negative function f ) (Srebro et al., 2010,
Lemma 3.1). Rearranging gives

T∑
t=1

〈vt(xt),xt − x?t 〉 − 16ηL

(
T∑
t=1

ut(xt)− ut(x?t )

)
≤ N(D2 + 2DPT )

2η
+ ηNG2 + 16ηLFT ,

where FT ,
∑
t∈[T ] ut(x

?
t ) denotes the cumulative game value. Since

∑
t∈[T ] ut(xt)−ut(x?t ) ≤

∑
t∈[T ]〈vt(xt),xt−x?t 〉,

(1− 16ηL)

(
T∑
t=1

〈vt(xt),xt − x?t 〉

)
≤ N(D2 + 2DPT )

2η
+ η(NG2 + 16LFT ).

Finally, we upper-bound the utility tracking error by

UTIL-ERR ≤
T∑
t=1

〈vt(xt),xt − x?t 〉 ≤
N(D2 + 2DPT )

η
+ 2η(NG2 + 16LFT ) .

√
(1 + FT + PT )(1 + PT ),

where the last step is by choosing the step sizes of each player equally as

η1 = . . . = ηN = η = min


√
N(D2 + 2DPT )

2NG2 + 32LFT
,

1

32L

 . (D.20)

Since (D.20) is covered by (D.18), the proof is finished. �

D.5. Useful Lemmas

Lemma 6 (Optimistic OGD (Zhao et al., 2021, Theorem 1)). If the domain diameter is bounded by D, i.e., ‖w1−w2‖ ≤ D
for any w1,w2 ∈ W , the gradient norm is bounded by G, i.e., ‖∇f(·)‖ ≤ G, the dynamic regret of OOGD is bounded by

T∑
t=1

ft(wt)−
T∑
t=1

ft(ut) ≤
D2 + 2DPT

2η
+ η

(
G2 +

T∑
t=2

‖∇ft(wt)−mt‖2
)
− 1

4η

T∑
t=2

‖wt −wt−1‖2,

where PT ,
∑T
t=2 ‖ut − ut−1‖ denotes the path length.

Lemma 7 (Optimistic FTRL (Rakhlin & Sridharan, 2013a)). Suppose the learning rates are non-increasing: ηt ≥ ηt+1 for
all t ≥ 1. Optimistic FTRL with the following update rule:

wt+1 = arg min
w∈W

{
ηt

〈
t∑

s=1

∇fs(ws) + mt+1,w

〉
+ ψ(w)

}
,

where ψ(w) ,
∑
i∈[d] wi lnwi, guarantees that

T∑
t=1

〈∇ft(wt),wt − u〉 ≤ KL(u,w1)

ηT−1
+

T∑
t=1

ηt−1‖∇ft(wt)−mt‖2∗ −
T−1∑
t=1

1

8ηt−1
‖wt −wt+1‖2,

where KL(x,y) ,
∑d
i=1 xi ln(xi/yi) denotes the Kullback-Leibler divergence.
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